

ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE, NIGERIA

DEPARTMENT OF AUTOMOTIVE ENGINEERING

FIRST SEMESTER EXAMINATIONS

2019/2020 ACADEMIC SESSION

COURSE: ATE 303 – Vehicle Structures (3 Units)

CLASS: 300 Level Automotive Engineering

TIME ALLOWED: 3 Hours

INSTRUCTIONS: Answer **Question 1** and any other **Four Questions.** Only short answers

are required for each item in Question 1. Date: February, 2020

Question 1

- 1. Explain the interrelation between 'Loads', 'Design' and 'Structures' in the study of Vehicle Structures
- 2. State three methods of quantifying dynamic or static load on a vehicle for use in design
- 3. Use a sketch to illustrate asymmetric loading
- 4. Explain how stiffness factors are applied in vehicle structure's design
- 5. Sketch any of the vehicle structure frames and describe its features briefly
- 6. State the criteria normally used for selecting materials for vehicle body
- 7. Use a sketch to describe how the SSS method is used in analysis of vehicle structures
- 8. For any of the vehicle layout components under Chassis category, list three sub-elements
- 9. Explain the differences between bending load and torsional load
- 10. What are the consequences of low torsional stiffness of a vehicle structure?
- 11. How is centrifugal load accounted for on a vehicle?
- 12. When do we experience vibration load on a vehicle?
- 13. State practical cases of combined torsional and asymmetrical loading

Question 2

The Figure 1 shows a vehicle under combined bending and torsion loads.

- a) Name all the reaction forces R_x shown
- b) Explain how these reactions can be calculated
- c) Using the boxes shown, explain how the vehicle responds to the combined loading. Note: Number the boxes as (1), (2), (3), (4) from left to right

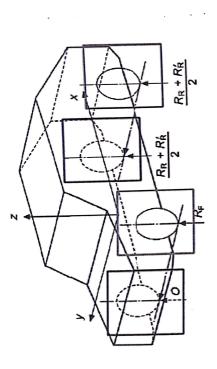


Figure 1

Question 3

Figure 2 illustrates the Chassis for an Integral Structure.

- a) Draw the sketch on your Answer paper
- b) Label the key components of this structure
- c) State the features of this structure in respect of geometry and stress distribution d) What are the main advantages of the structure?

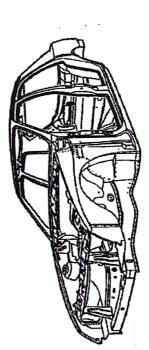


Figure 2

Question 4

Figure 3 shows SSS elements of half-saloon car under bending.

- a) Name the surfaces labeled SSS5, SSS6 and SSS7
 - b) Draw their free body diagrams (FBD's)
 - c) Write their equilibrium equations

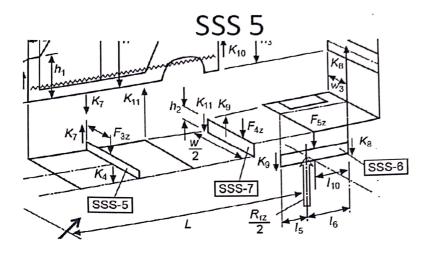


Figure 3

Question 5

Figures 4(i) and 4(ii) show the strength-of-materials analysis for SSS elements of a saloon car comprising: (i) front suspension tower and (ii) rear seat cross beam.

- (a) Derive the equations for calculating the side shear forces shown, i.e. K_B , K_R for 4(i) and K_K for 4(ii). Note the coordinate y represents the relative locations of the positions
- (b) State the design implications of the results for each of them

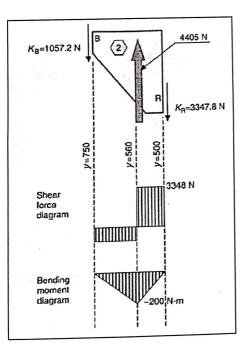


Fig 4(i)

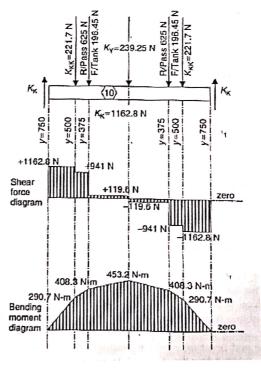


Fig 4(ii)

Question 6

Figure 5 shows SSS elements of a half-saloon car under bending.

- d) Name the surfaces labeled SSS1, SSS2, SSS3 and SSS4
- e) Draw their free body diagrams (FBD's)
- f) Write their equilibrium equations

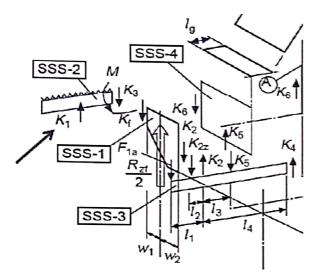


Figure 5

Question 7

- (a) The main components of an automobile can be sub-grouped in the following assemblies
 - i. Engine or power plant
 - ii. Running gear or basic structure
 - iii. Driving system
 - iv. Basic Control system
 - v. Electrical system
 - vi. Accessories

State two items in any two of these categories

- (b) Figure 6 is schematic of a 4-wheel drive.
 - i. Sketch and label the top view (i.e. second one below)
 - ii. Describe briefly the key features of this drive system

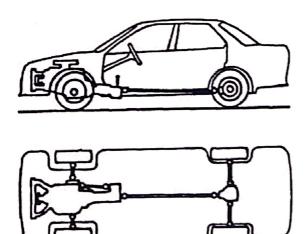


Figure 6